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Earth’s orbit has a radius of 1 A.U..
The circumference of the circular orbit is 2 π A.U.

It takes a year to move travel over a 2π A.U. length.
Speed is 2π A.U. / year.

v = ωr
where ω is angular velocity in  2π radians/(time it takes to make a circuit)

v = 2π A.U. / year

v = ωr 
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Di�erence in 
velocity between 
two vectors

The velocity vector changes direction 
during the circuit around the sun.

Over a year’s time the 
velocity vector traces a 
circle of circumference 
2π * v
or 2π/year  * 2π A.U. / year
= 2π2/year2 *A.U.
= ω2r

Centrifugal
Acceleration = ω2r

2π
 A

.U
. /

 y
ea

r

Sun

To get change of velocity from one 
month to the next, place the foot of 
one vector on the foot of another. 
The vector from one tip to the 
other is the change.

Between these two vectors there 
are many intermediate vectors.
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So centrifugal acceleration is ω2r.

Yes, I know the so-called centrifugal force isn’t really 
a force but inertia in a rotating frame. So to the left is 
the obligatory XKCD cartoon.

Now, gravity falls off with inverse square of distance.

Gravity acceleration = GM / r2. 

In a circular orbit the orbiting body stays the same 
distance from the central gravitating body. Force of 
gravity cancels centrifugal force

So we can say
GM / r2 = ω2r
GM = ω2r3

Kepler’s Third Law
Orbital Period T is given by

T = 2π (a3 / GM)1/2 

Where a = k A.U., k is some positive real number.

Substituting (2π / Year)2 * A.U.3  for GM
and k A.U. for a,

T =  2π ((k A.U.)3 / ((2π / Year)2 * A.U.3)1/2

T =  2π (k3 * (Year / 2π  )2)1/2

T = k3/2 Years

Semi
Major Axis
a = k A.U.

Semi
Major Axis
a = k A.U.

And in the case of earth’s orbit about the sun, we see
 GM = (2π / Year)2 * A.U.3 .
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Does T = k3/2 Years work? To check I went to the JPL data base and searched for Outer Main Belt Asteroids 
whose semi-major axi are close to 4 A.U.. What’s square root of 4? 2. What’s 23? 8. So these rocks with 4 A.U. 
orbits should have orbital periods of 8 years.

Then I went to the same JPL data base and searched for 
Centaurs with close to a 9 A.U. semi major axis.

And here’s some Centaurs with an approximately 16 A.U. 
semi-major axis.

What would be the orbital period of a body with a 25 A.U. 
semi major axis?

How long would it take to orbit the sun for a Kuiper Belt 
Object having a 36 A.U. semi major axis?

How about a scattered disc object having a 100 A.U. semi 
major axis?
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| r X v | = area of parallogram whose sides are r and v.

As we chop the wedges �ner they
approach the shape of the
parallellogram cut in half
through the diagonal.

Kepler’s 2nd Law:
Radius vector sweeps out
equal area in equal times.

.292 A
.U

./W
k.

.264 A.U./W
k.

.222 A.U./Wk.

.19 A.U./Wk.

Cross product of
position and velocity vectors

is twice the area the
vector sweeps out in a given time.

|rXv|
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Area of circle
with radius a

 is πa2

The ellipse with semi-major axis a
and eccentricity e

is the circle with radius a
vertically scaled by (1-e2)1/2

Area of this ellipse  = (1-e2)1/2πa2

a a

Semi Major Axis
a = k A.U.

Semi Major Axis
a = k A.U.

eaea

(1-e
2) 1/2a

a

|r X v| =
Twice area ellipse / orbital period

= 2  (1-e2)1/2 π a2 / T
= 2  (1-e2)1/2 π (k A.U.)2 / (k3/2 years)
= 2  (1-e2)1/2 π k1/2 A.U.2 / year 

We’ve been using canonical units based 
on earth’s orbit around the sun. But we 

can also choose canonical units based on 
any circular orbit around any body. 

Here we’ll switch gears
and base our units on

Earth’s geosynchronous orbit.

We set our unit of length, Rg, to the 
radius of geosynchronous orbit.

Rg = 42,300 kilometers.

Orbital period T is one sidereal day,
T = 23 hours 56 minutes.

For this discussion
we’ll just call that a day.

T = 1 day

Moon’s orbital radius is 384,400 km.
384,400/42,300 = ~9.08

A lunar distance is abou 9 Rgs 

G
eo

sy

nchronous        Orbit

Lunar    Orbit

R g
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Earth

Geosynch

R g

r
r =

 (1
+e

)aa

ea

Take a point on the beanstalk.
Call the distance from this point

to earth’s center r Rg.

Note we’re using
Rg as our unit of length.

Release a payload from this point and
it will fall into an elliptical orbit with 

earth’s center at a focus and 
r is the apogee of this ellipse.

r Rg = (1+e)a

r

v

|r X v|  =  rRg * v  =  rRg * ωrRg  =  ω(rRg)2

Every point on the elevator is moving at the same angular velocity, 2 π radians/day.

An alert reader might say “Hey! That yellow rectangle’s area
is a lot more than twice the are of the ellipse!”

That’s because we are using a day as our time unit.
ωr would be shorter if we used T, the orbital period of this ellipse, as our time unit, .

|r X v| = twice ellipse area/ellipse’s orbital period
ω(rRg)

2 = (1-e2)1/2 * 2 π a2 /T
Recall a = k Rg.

ω(rRg)
2 = (1-e2)1/2 * 2 π (kRg)

2 /(k3/2 days)
2 π/day * (rRg)

2 = (1-e2)1/2 * 2 π k1/2 * Rg
2 /day

(rRg)
2 = (1-e2)1/2 * k1/2 * Rg

2

r2 = (k(1-e2))1/2

Now rRg = (1+e)a which = (1+e)kRg  so  k = r/(1+e)
r2 = (r(1-e2)/(1+e))1/2

r4 = r(1-e2)/(1+e)
r3 = 1-e

e = 1- r3

If r > 1, payload is released at perigee and we can use similar methods to find e = r3-1.
In general 

e = |r3 - 1|
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So we know the eccentricity of the conic payload follows when released from the elevator.
This plus the fact that release point is at either periapsis or apoapsis of the orbit allows us

to draw a family of conics associated with the elevator

Any vertical space elevator anchored to a body surface has a similar family of conics.
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Above synchronous orbit centrifugal force exceeds 
gravity. And gravity dominates below synchronous 
orbit. How long does the tether above synchronous 
need to be to balance the length below?

This is the question P. K. Aravind looks at in his 
pdf The Physics Of The Space Elevator. 
http://users.wpi.edu/~paravind/Publications/PKASpace Elevators.pdf
From Aravind’s pdf:

Aravind integrates centrifugal acceleration and 
gravity along the length to get net force. To the 
right is an attempt to show the curve being 
integrated.

After some integrating and algebra Aravind 
concludes the bean stalk would need to extend 
150,000 km from earth’s center in order to counter-
balance the length below geosynchronous orbit.

Where 
H = distance from elevator top to Earth center
R = Earth’s radius, 6378 km or about .15 Rg
Rg = radius geosynchronous orbit, about 42,000 km

When the tether foot is at Earth’s surface,
H is 150,000 kilometers.
But this elevator is implausibly large and the huge 
stress inflicted requires materials with extremely 
high tensile strength. It might be a while before we 
can make bucky tubes of sufficient length.

Earth

Geosynch   Orbit        .  

96,000 km
above

geosynch

36,000 km
below

geosynch
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This tether top
could �ing

payloads almost
to Neptune

But a 142,000 km elevator
isn’t remotely plausible.

What about a less ambitious
geosynch elevator?

One capable of �inging
payloads to escape.

What would the
balancing lengths be? 

Earth

Geosynch   Orbit        .  

This tether top
could �ing
payloads to

Earth escape

Lower length
to balance

would not descend
all the way

to Earth 
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Recall e = r3-1. Eccentricity parabola is 1.
1 = r3-1
r = 21/3

Set R = k Rg
H = R/2 (1+8 (Rg/R)3)1/2 - 1)

21/3 Rg = r Rg/2 (1+8 (Rg/(k Rg))
3)1/2 - 1)

21/3  = k /2 (1+8 /k3)1/2 - 1)
21/3  2/k = (1+8 /k3)1/2 - 1

let s = 2/k
21/3  s = (1+s3)1/2 - 1
21/3  s + 1 = (1+s3)1/2

22/3 s2 + 24/3s + 1 = 1+s3

s3 - 22/3s2  -  24/3s = 0
s2 - 22/3s  -  24/3 = 0

Then by the quadratic formula
s =  (22/3 ± (24/3 + 4*24/3)1/2)/2

s = 22/3(1 + 51/2)/2
s = 22/3 (1 + 51/2)/2

s =  22/3 Φ
2/k = 22/3 Φ

Φk = 21/3

Earth

Geosynch

ΦR

R

Escape

Earth

Geosynch

Rg

21/3Rg

R

Escape

It’s our old friend the
Golden Mean!
Given a vertical tether whose top can 
hurl payloads at escape velocity and a 
lower tether length that balances the 

upper length, radius tether top is
1.618 the radius of tether foot.

It was a pleasant surprise to see this 
number pop up when I didn’t expect it.
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DEIMOS ORBIT

PH

OBOS ORBIT
Z  R  V  T  Oero elative elocity ransfer rbit

Anchor a vertical elevator on Deimos.
Between Deimos circular orbit and Mars’ center there are ellipses of every eccentricty between 0 and 1.

Anchor an elevator at Phobos.
Between Phobos circular orbit and the parabola there are also ellipses of every eccentricity between 0 and 1.

Do the Phobos and Deimos elevators share an ellipse?
Overlapping the two families of conics, the moiré pattern seems to indicate a shared ellipse.

At periapsis a payload traveling along this elliptical orbit would have
the same relative velocity as the rendezvous point on a Phobos elevator.

At apoapsis the payload would have the same relative velocity
as the rendezvous point on a Deimos tether.

Using this Zero Relative Velocity Transfer Orbit the two moons
could exchange payloads using virtually zero reaction mass.  

Paul Penzo, a JPL engineer, talked about this possible path between
Deimos and Phobos elevators back in 1984.  Above is Penzo’s illustration from that paper.

I believe ZRVTO is a term coined by Marshall Eubanks who is also an advocate of
PAMSE -- Phobos Anchored Mars Space Elevator.
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(1-e)a

(1+e)a

v  = ωphobos * (1-e)a

v  = ωDeimos * (1+e)a

The top of the Phobos tether is moving the same 
angular velocity as Phobos, ωphobos.

The bottom of the Deimos tether is moving the 
same angular velocity as Deimos, ωDeimos.

Specific angmom = vperiaerion X rperiaerion
Specific angmom = vapoiaerion X rapoiaerion
vperiaerion X rperiaerion = vapoiaerion X rapoiaerion
ωPhobos * ((1-e)a)2 = ωDeimos * ((1+e)a)2

Specific angmom =
ωPhobos * r2 =  (a(1-e2)μ)1/2

At periapsis r is (1-e)a. So a = r/(1-e). Substituting:
 ωPhobos * r2 =  (r(1+e)μ)1/2

 r
4 =  r(1+e)μ/ωPhobos

2

r =  ((1+e)μ/ωPhobos
2)1/3

Similarly:

e = (1 - (ωDeimos/ωPhobos)
1/2)/(1 + (ωDeimos/ωPhobos)

1/2)

rperiaerion = (1 + e)1/3rPhobos

rapoaerion = (1 - e)1/3rDeimos

DEIMOS

PHOBOS

ZR
V
TO

ZR
V
TO

924 km
Tether

2935 km
Tether

Angular velocities as well as
orbital radii of Phobos and Deimos 

are easily found on Wikipedia.

Plugging these into the above
equations we find an ~1000 km tether 
ascending from Phobos and a ~3000 
km tether descending from Deimos

is sufficient for a ZRVTO route
between the two moon.

It is reassuring my numbers
are close to Paul Penzo’s.
Wnile I’m a rank amateur,

Penzo was an accomplished
aerospace engineer.

Not just Phobos & Deimos
This technique can be used for any 
pair of tidelocked moons in nearly 

circular, coplanar orbits.

A bunch of moons orbiting our gas 
giants fit this description.

In the following page I look at 
Saturn’s and Jupiter’s moons.
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Fast paced science fiction set in our solar system 
is implausible. Trip times and launch windows are 
on the order of months and years in the inner solar 

system, years and decades in the outer solar system.

It’s a different story in a gas giant’s family of 
moons. Trip time and launch windows are on the 

order of days and weeks. 
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nearly circular coplanar orbits. So ZRVTO routes 
between moon elevators might be possible.

There might be gas giants with families of large 
moons in other star systems as well. A gas giant in 

the “Goldilocks Zone” with a family of large moons 
would be a great science fiction setting.



Thanks!
To folks in Facebook groups who help proofread this booklet and offer suggestions: Greg Bullock, MolbOrg Ogrovitch, Keith Blockus 

and Duffy Toler. Also folks in the Math Stack Exchange: Yves Daoust, robjohn and Claude Leibovici.

A few blog posts on orbital tethers and space elevators:
Phobos, Panama Canal Inner Solar System: http://hopsblog-hop.blogspot.com/2015/06/phobos-panama-canal-of-inner-solar.html

Deimos Tether: http://hopsblog-hop.blogspot.com/2016/01/deimos-tether.html 
Upper Phobos Tether: http://hopsblog-hop.blogspot.com/2016/01/deimos-tether.html 

Lower Phobos Tether: http://hopsblog-hop.blogspot.com/2015/12/lower-phobos-tether.html 
Pluto Charon Elevator: http://hopsblog-hop.blogspot.com/2016/08/pluto-charon-elevator.html 

Wolfe’s Tether Spreadsheet: http://hopsblog-hop.blogspot.com/2015/12/how-wolfes-tether-spreadsheet-works.html 
Transcislunar Railroad: http://hopsblog-hop.blogspot.com/2016/08/tran-cislunar-railroad.html

Mini Solar Systems: http://hopsblog-hop.blogspot.com/2013/01/mini-solar-systems.html
Orbital Momentum As A Commodity http://hopsblog-hop.blogspot.com/2015/05/orbital-momentum-as-commodity.html

Hop’s Deviant Art Gallery: https://hop41.deviantart.com
Coloring Books by Hop David

Conic Sections and Celestial Mechanics Coloring Book Out of print but pdf available: http://clowder.net/hop/TMI/pages1-40.pdf
    Geoscapes,         Surreal Visions
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Hop T-Shirts on Ajo-Copper-News.com
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Ajo Tessellation Shirt

Puerto Peñasco Shirt

Ajo How Many Birds? Shirt

I call these Cantor Birds. Draw a line from wing tip to 
wing tip and the tail feathers punches out the middle 
third of the line segment. The next iteration of birds 
puches out the middle thirds of remaining line 
segments. And so on.

Fractal fish tessellation
in Puerto Peñasco shirt
is by Robert Fathauer.


