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Notes from the artist
This book is for kids from kindergarten to college.

I‛m hoping this book wll expose younger students to concepts they normally wouldn‛t see until higher grades.
And that it will give advanced students some new views of concepts they‛re already familiar with.

Thank you to Steven Pietrobon for his many helpful comments. Also to Isaac Kuo for his suggestion.
They‛ve helped me make this a better book. Any mistakes in this book are my own.

Hollister (Hop) David
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Evenly spaced concentric circles
measure distance from a point.
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For each point on a parabola,
Distance to Focus Point = Distance to Directrix Line.

Eccentricity = 1.
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For each point on this ellipse,
Distance to Focus Point = 1/2 Distance to Directrix Line

Eccentricity = 1/2.
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For each point on this hyperbola,
Distance to Focus Point = Twice Distance to Directrix Line

Eccentricity = 2.
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Conic sections come from cutting a cone with a plane.
The circle, ellipse, parabola and hyperbola

are all conic sections.
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Conic Section means Cut Cone.
A flashlight beam is a cone and the floor is a plane that cuts it.

The circle, ellipse, parabola, and hyperbola are all conic sections.
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With a hyperbola the floor cuts both halves of the light cone.
There are two lines the hyperbola gets closer and closer to but 

never touches. These are called the hyperbola‛s asymptotes.
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For each point on this ellipse,
Distance to Focus 1 + Distance to Focus 2 = 8.
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For each point on this hyperbola,
Distance to Focus 1 - Distance to Focus 2 = 4.



12

Tack two ends of a string to a sheet of drawing board.
Keeping the string taut, move the pencil. The path will be an ellipse with a tack at each focus.

Planets, asteroids and comets move about our sun on ellipse shaped orbits.
The sun lies at one focus of the ellipse. This Kepler‛s First Law.

The point closest to the sun is called the perihelion, the farthest point is the aphelion.
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A Hohmann orbit from earth to Mars is tangent to (just touches) the Earth orbit and Mars 
orbit. The Hohmann perihelion is at 1 A.U., the aphelion is at 1.52 A.U.

The earth moves around the sun at 30 kilometers/sec.
Mars moves around the sun at 24 kilometers a second.

At perihelion the space ship is moving 3 kilometers/second faster than earth.
At Aphelion, the spaceship is moving 2.5 kilometers/second slower than Mars. 

0 1
.1 .2 .3 .4 .5 .6 .7 .8 .9 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Mercury
.39 A.U.

Venus
.72 A.U.

Earth
1 A.U.

Mars
1.52 A.U.

The average distance from earth‛s center to the sun‛s center is called an 
astronomical unit, or A.U. for short. Mercury‛s average distance from the 

sun is .39 A.U., Venus .72 A.U. and Mars average distance is 1.52 A.U.
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Parts of an Ellipse
a = semi major axis
b = semi minor axis

e = eccentricity
(in the above ellipse e = .5 or one half.)

ea = distance from ellipse center to focus

The semi major axis of an ellipse is often denoted with 
the letter a. The semi minor axis is usually called b.

An ellipses‛ eccentricity is often labeled e.
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e = 0e = 0

e = .3

e = .5

e = .6

e = .9

e = 1

In all of these ellipses a = 1. That is the semi major axis is one unit long.
The circle is a special ellipse of eccentricity zero.

As eccentricity gets closer to one, the foci move from the center to the edge.
A line segment could be regarded as an ellipse of eccentricity 1.
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Over 2 weeks the orbit sweeps a wedge. Some wedges are short and fat, others tall and skinny.
But they all have the same area.

An orbiting body sweeps equal areas in equal times.
This is Kepler‛s Second Law.
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Perihelion

Aphelion

The two rectangles and parallelogram pictured above all have the same area.

As an object gets closer to the sun it goes faster, so its velocity vector gets bigger. The 
Radius Vector and velocity vector make two sides of parallelogram. The area of the 

parallelogram stays the same. At perihelion and aphelion the parallelogram is a rectangle.
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Radius Vector X Velocity Vector
=

Specific Angular Momentum
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A.U./Day
| r X v | = area of parallelogram
whose sides are r and v.

Chop the wedges finer and they
approach the shape of the
parallelogram cut in half
through the diagonal.

Kepler‛s 2nd Law:
Radius vector sweeps out
equal area in equal times.

.292 A
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.264 A.U./W
k.

.222 A.U./Wk.

.19 A.U./Wk.

Cross product of
position and velocity vectors

is twice the area the
vector sweeps out in a given time.

|rXv|

|rXv|

.04006

A.U./D
ay

Chopping into finer wedges it becomes obvious | r X v | is twice the area of
a wedge swept out over a given time.   Summing all the wedges we can see

specific angular momentum is twice (area of the ellipse)/(orbital period).
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22 = 2 X 2 = 4
2 squared is 2 times 2 which is 4.

Another way to read it:
2 to the second power equals 2 times 2 which equals 4.

Can you see why 2 to the second power is also called 2 squared?

41/2 =  2
4 to the half power is 2.    Or:   The square root of 4 is 2.

32 = 3 X 3 = 9
3 squared is 3 times 3 which is 9.

Another way to read it:
3 to the second power equals 3 times 3 which equals 9.

91/2 =  3
9 to the half power 3.   Or:   The square root of 9 is 3.

42 = 4 X 4 = 16
4 squared is 4 times 4 which is 16.

161/2 =  4
16 to the half power is 4.  

Or: 
The square root of 16 is 4.

Squares and Square Roots
This may not seem related to conic sections and orbital mechanics.

But we will use these concepts in Kepler‛s Third Law.
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23 =
2 X 2 X 2 =

2 X 4 =
8

2 to the third power is 8.
or:

2 cubed is 8.

81/3 =  2
8 to the one third power is 2. 
Or:   The cube root of 8 is 2.

33 =
3 X 3 X 3 =

3 X 9 =
27

3 to the third power is 27.
or:

3 cubed is is 27.

271/3 =  3
27 to the one third power is 3. 

The cube root of 27 is 3.

Cubes and Cube Roots
These are also concepts used in Kepler‛s Third Law.
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Given a right triangle with legs a and b,
and hypotenuse c,

a2 + b2 = c2

Both squares have side lengths (a+b)
So the both have the same area: (a+b)2
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Difference in 

velocity between 

two vectors

Earth is moving about 2π A.U./year.
The velocity vector changes direction 
during the circuit around the sun.

Over a year‛s time the
velocity vector traces a
circle of circumference 

2π * v
or

2π/year  * 2π A.U. / year
= 2π2/year2 *A.U.

= ω2r

Centrifugal
Acceleration = ω2r

2π
 A

.U
. /

 y
ea

r

To get change of velocity from 
one month to the next, place the 
foot of one vector on the foot of 
another. The vector from one tip 
to the other is the change.

Between these two vectors there 
are many intermediate vectors.

2π A
.U

. / year

2π A.U. / year

2π A.U. / year

2π A.U. / year

Sun

Calling the period of a circular orbit T, (2π radians /T) is ω, the angular velocity.
Circle radius = r.

Centrifugal acceleration is ω2r. 
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So centrifugal acceleration is ω2r.
The so-called centrifugal force isn‛t really a force but inertia in a rotating frame.

Gravity falls off with
inverse square of distance.
Gravity acceleration = GM / r2.
G is the universal gravitational constant
M is the mass of the gravitating body and
r is the  distance of the body.
In a circular orbit the orbiting body
stays the same distance from the central 
gravitating body. Force of gravity cancels 
centrifugal force
So we can say
GM / r2 = ω2r
GM = ω2r3

Kepler‛s
Third Law
Orbital Period T is given by

T = 2π (a3 / GM)1/2 

Where a = k A.U..

Substitute
(2π / Year)2 * A.U.3  for GM
and k A.U. for a,

T =  2π ((k A.U.)3 / ((2π / Year)2 * A.U.3)1/2

T =  2π (k3 * (Year / 2π  )2)1/2

T = k3/2 Years

Semi
Major Axis
a = k A.U.

Semi
Major Axis
a = k A.U.

GM = ω2r3

In the case of earth‛s orbit about the sun, we see
 GM = (2π / Year)2 * A.U.3 .
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Double the distance
& gravity spreads over

4 times the area

Triple the distance
& gravity spreads over

9 times the area

T = k3/2 Years
Kepler‛s Third Law:

Orbital period is proportional to
length of semi major axis raised to 3/2 power. 
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The number of astronomical units of the semi-major axis
raised to the 3/2 power gives the number of years a body

takes to orbit the sun. This comes from Kepler‛s Third Law.

a = 16 A.U.
This object

takes 64 years
to orbit the sun.

163/2 =
161/2 X 161/2 X 161/2 =

4 X 4 X 4 =
4 X 16 = 64

a = 9 A.U.
This object

takes 27 years
to orbit the sun.

93/2 =
91/2 X 91/2 X 91/2 =

3 X 3 X 3 =
3 X 9 = 27

a = 4 A.U. This takes
8 years to orbit the sun.

43/2 =
41/2 X 41/2 X 41/2 =

2 X 2 X 2 = 8

a = 1 A.U. Earth takes
1 year to orbit the sun.
13/2 = 11/2 X 11/2 X 11/2 =

1 X 1 X 1 = 1

Saturn orbit
semi major axis

is about 9.54 A.U.
9.543/2 = about 29.45.
Saturn‛s orbital period
is about 29.45 years.

Jupiter orbit
semi major axis
is about 5.2 A.U.

5.23/2 = about 11.9.
Jupiter‛s period

is about 11.9 years.

Mars orbit
semi major axis

is about 1.52 A.U.
1.523/2 = about 1.88

Mars‛ period
is about 1.88 years.
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Slice a circle into six wedges
and re-arrange.
You have a shape that‛s
a bit more than a
parallelogram with
sides 3r by r.

Slice the circle into finer 
wedges and re-arrange.

r

3r

π is a number a little more than 3, about 3.14. It‛s spelled “pi” and pronounced “pie”,
like delicious apple pie.

The area of a circle is πr x r which is πr2.
For example a circle of radius 10 has area of about 3.14 x 102, which is 314.

The finer the wedges,
the closer the circle is to a
rectangle having sides r and πr.
π is a little more than 3. It‛s about 3.14

Area Of A Circle
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ea ea

a a
b

Both these are
the same length

a a

2a

Snip off the shorter string segment and put it on the other side and you‛ll see
the string length is 2a, the length of the ellipse‛s major axis.

b and ea are legs
of a right triangle
with hypotenuse a.

(ea)2 + b2 = a2

b2 = a2 - (ea)2

b2 = (1 - e2)a2

b = (1 - e2)1/2a

b = (1 - e2)1/2a
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The ellipse with semi-major axis a and eccentricity e
is the circle with radius a

vertically scaled by (1-e2)1/2

Area of this ellipse  = (1-e2)1/2  πa2

a a

Semi Major Axis
a = k A.U.

Semi Major Axis
a = k A.U.

eaea

(1-e
2) 1/2a

Area = πa2

a
a

a

Area  ellipse  = (1-e2)1/2  πa2

a(1-e2)1/2a

(1-e2)1/2a

|r X v| =
Twice area ellipse / orbital period

= 2  (1-e2)1/2 π a2 / T
= 2  (1-e2)1/2 π (k A.U.)2 / (k3/2 years)

= 2  (1-e2)1/2 π k1/2 A.U.2 / year 

An ellipse can be thought of as a circle shrunk along one of it‛s diameters.
Thus the area of the ellipse is the area of the circle shrunk by the same factor.

Specific angular momentum |r X v| is twice area ellipse over orbital period. 
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Radius

.28
rads

1 2

We choose our
tape measure unit
to be the same as

the radius of
our circle.

76

5

8

1 radian
1 radian

1 radian1 rad
ian

1 r
ad

ian
1 r

adian

Wrap the tape around the 
circle‛s circumference.

 Each unit on the tape covers 
1 radian of the circle‛s arc

1 radian
=

about 57.3º

A full circuit around the 
circle‛s edge is about

2 π radians.
π = about 3.14.

2 π = about 6.28
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ω is the Greek lower case letter omega.

The symbol ω is often used to 
denote angular velocity in radians 

covered over a period of time.

A full circuit is 2 π radians 

Examples:

The second hand on a clock has
ω = 2 π radians / minute

The minute hand on a clock has
ω = 2 π radians / hour

The hour hand on a clock has
ω = 2 π radians / 12 hours

Speed is angular velocity in radians times r
where r is distance from center of rotation.

v = ωr
Pa

th
 t

ra
ce

d 
out in a minute = 2cm

 * 2πPa
th

 t
ra

ce
d 

ou
t i

n a
 minute = 4cm * 2π                                         

.

2 cm
4 cm

v = ωr = (2 π * 4 cm) / minute

v = ωr = (2 π * 2 cm) / minute

All portions of a second hand are moving the
same angular velocity, 2π radians per minute.

But the outer parts of the second hand
are moving faster than the parts closer to

the center of rotation.
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 Here we‛ll switch gears
and base our units on

Earth‛s geosynchronous orbit.
We set our unit of length, Rg,

to the radius of geosynchronous orbit.

Rg = 42,300 kilometers.
Orbital period T is one sidereal day,

T = 23 hours 56 minutes.
For this discussion

we‛ll just call that a day.

T = 1 day
Moon‛s orbital radius is 384,400 km.

384,400/42,300 = ~9.08

Ge
os

yn
chronous      Orbit

Lunar    Orbit

R g

9R
g

We‛ve been using canonical units based on earth‛s orbit around the sun.

But we can also choose canonical units based on any circular orbit around any body.
Kepler‛s Third Law still applies.

A lunar distance
is about 9 Rg. 

93/2 = (91/2)3 = 33 = 27

And, indeed,
the moon‛s orbital period

is close to 27 days.

Earth

Moon
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Upward ωr2

(centrifugal force)
exceeds

downward GM/r2

(gravity) 

Upward ωr2

(centrifugal force)
balances

downward GM/r2

(gravity) 

Downward GM/r2

(gravity)

Exceeds
 upward ωr2

(centrifugal force)

Gravity Gradient
Stabilized

Vertical Tethers
A.K.A. Sarmount Sky Hooks

The upper parts of
such tethers feel
an upward net pull.

The lower parts
feel a net

downward acceleration.

Tidal forces keep
such tethers aligned
to the local vertical. 

The best known
vertical tether in 

science fiction is the 
space elevator

as proposed by
Arthur C. Clarke in 

“Fountains of Paradise”.

ωr2 balances with GM/r2 
at geosynchronous 

atlitude and the tether 
foot extends all the way 

to earth‛s surface. 
That‛s the tether

we will look at.

Earth
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Earth

Geosynch

R g

r
r 

= 
(1

+e
)aa

ea

Take a point on the beanstalk.
Call the distance from this point

to earth‛s center r Rg.

Note we‛re using
Rg as our unit of length.

Release a payload from this point and
it will fall into an elliptical orbit with 

earth‛s center at a focus and 
r is the apogee of this ellipse.

r Rg = (1+e)a

r

v

|r X v|  =  rRg * v  =  rRg * ωrRg  =  ω(rRg)2

Every point on the elevator is moving at the same angular velocity, 2 π radians/day.

An alert reader might say “Hey! That rectangle‛s area
is a lot more than twice the are of the ellipse!”

That‛s because we are using a day as our time unit.
ωr would be shorter if we used T, the orbital period of this ellipse, as our time unit, .

|r X v| = twice ellipse area/ellipse‛s orbital period
ω(rRg)2 = (1-e2)1/2 * 2 π a2 /T

Recall a = k Rg.
ω(rRg)2 = (1-e2)1/2 * 2 π (kRg)2 /(k3/2 days)

2 π/day * (rRg)2 = (1-e2)1/2 * 2 π k1/2 * Rg
2 /day

(rRg)2 = (1-e2)1/2 * k1/2 * Rg
2

r2 = (k(1-e2))1/2

Now rRg = (1+e)a which = (1+e)kRg  so  k = r/(1+e)
r2 = (r(1-e2)/(1+e))1/2

r4 = r(1-e2)/(1+e)
r3 = 1-e

e = 1- r3
If r > 1, payload is released at perigee and we can use similar methods to find e = r3-1.

In general 

e = |r3 - 1|
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So we know the eccentricity of the conic payload follows when released from the elevator.
This plus the fact that release point is at either periapsis or apoapsis of the orbit allows us

to draw a family of conics associated with the elevator

CI
RCL

E      ORBIT
PARABOLIC       TRAJECTORY       

.CI
RCL

E      ORBIT
PARABOLIC       TRAJECTORY       

.

ELLIPSESELLIPSES

HYPERBOLASHYPERBOLAS

ELLIPSESELLIPSES
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DEIMOS ORBIT

PH
OBOS ORBIT

Z  R  V  T  Oero elative elocity ransfer rbit

Anchor a vertical elevator on the Martian moon Deimos. Between Deimos circular 
orbit and Mars‛ center there are ellipses of every eccentricty between 0 and 1.

Anchor an elevator at the Martian moon Phobos. Between Phobos circular orbit and 
the parabola there are also ellipses of every eccentricity between 0 and 1.

Do the Phobos and Deimos elevators share an ellipse?
Overlapping the two families of conics, the moiré pattern seems to indicate a shared ellipse.

At periapsis a payload traveling along this elliptical orbit would have the same relative velocity
as the rendezvous point on a Phobos elevator. At apoapsis the payload would have

the same relative velocity as the rendezvous point on a Deimos tether.

Using this Zero Relative Velocity Transfer Orbit the two moons
could exchange payloads using virtually zero reaction mass.  

Paul Penzo, a JPL engineer, talked about this possible path between
Deimos and Phobos elevators back in 1984.  Above is Penzo‛s illustration from that paper.

I believe ZRVTO is a term coined by Marshall Eubanks who is also an advocate of
PAMSE -- Phobos Anchored Mars Space Elevator.

Mars Mars
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v  = ωphobos * (1-e)a

ZR
VT

O

ZRVTO

924 km
Tether

2935 km
Tether

DEIMOS

PHOBOS

DEIMOS

PHOBOS

v  = ωDeimos * (1+e)av  = ωDeimos * (1+e)a

(1-e)a

(1+e)a

(1-e)a

(1+e)a

Specific angmom =
ωPhobos * r2 =  (a(1-e2)μ)1/2

At periapsis r is (1-e)a.
So a = r/(1-e). Substituting:

 ωPhobos * r2 =  (r(1+e)μ)1/2

 r4 =  r(1+e)μ/ωPhobos
2

r =  ((1+e)μ/ωPhobos
2)1/3

Similarly:

rperiaerion = (1 + e)1/3rPhobos

rapoaerion = (1 - e)1/3rDeimos

Angular velocities as well as
orbital radii of Phobos and Deimos are 

easily found on Wikipedia.

Plugging these into the above
equations we find an ~1000 km tether 
ascending from Phobos and a ~3000 
km tether descending from Deimos

is sufficient for a ZRVTO route
between the two moons.

Not just Phobos & Deimos
This technique can be used for any 
pair of tide-locked moons in nearly 

circular, coplanar orbits.

Anchor moons could be man made.
A series of orbital tethers would be 

shorter and endure less stress
than a full blown space elevator

to a planet‛s surface.

e = (1 - (ωDeimos/ωPhobos)1/2)/(1 + (ωDeimos/ωPhobos)1/2)

The top of the Phobos tether is moving the 
same angular velocity as Phobos, ωphobos.

The bottom of the Deimos tether is moving 
the same angular velocity as Deimos, ωDeimos.

Specific angmom = vperiaerion X rperiaerion
Specific angmom = vapoiaerion X rapoiaerion
vperiaerion X rperiaerion = vapoiaerion X rapoiaerion

ωPhobos * ((1-e)a)2 = ωDeimos * ((1+e)a)2
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DANDELIN
SPHERES

A floating ball head is wearing a dunce cap/mosquito net. Where the ocean meets the
mosquito net is an ellipse. Where the ball head touches the water is a focus. Where the fish 

kisses the air is a focus. The ball head‛s hat brim is a directrix plane as is the fish‛s belt 
plane. Where the directrix planes meet the ocean surface are two lines called directrix lines.
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Each radius of a circle has length r.

A line tangent to the circle is at right
angles to the radius it touches.

by the Pythagorean theorem:

e2 + r2 = f2         e2 = f2 - r2

 

g2 + r2 = f2         g2 = f2 - r2

e = g
Two such line segments
on tangent lines whose
end points meet
are equal.

These lines tangent to a sphere
meet at a point. The lines are
called elements of a cone.

The bold line segments
are all equal. Each
line segment is a leg of
a right triangle, the other
leg being a circle radii of the
sphere. All the right
triangles share the
same hypotenuse. 

r r

fe g

The equality of line segments whose ends meet,
that lie on lines tangent to the sphere and having an end lieing on 

the sphere, is a tool in use of Dandelin Spheres.
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If a = b and c = d, then a - c = b - d.
Each rib of the above lamp shade ia

a line segment equal to each other rib.

- =

The lamp shade ribs
are equal.

The elements of these cones
are tangent to two spheres.
The long line segments are

equal to each other.
The short line segments are

equal to each other.
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Dandelin spheres show that two descriptions of
the ellipse do indeed describe the same thing.

r1

r2

r1

r2

L1

L2

This ellipse comes from
a plane cutting a cone.

The plane cutting this cone is tangent
to both Dandelin spheres.

Any line in this plane touching a 
sphere is tangent to that sphere.

Because they‛re
two meeting

tangent line segments,
r1 = L1

and
r2 = L2

r1 + r2 = L1 + L2

L1 + L2 is a Lampshade rib.

All the lampshade ribs
are the same length.

r1
 + r2

 sum to
the same number
for all points on

the ellipse. 
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Directrix

Focus

Dista
nce

to Focus

Dista
nce

to Directr
ix

These tw
o

tan
gent lin

e

segments

are
 equal

Dista
nce to Directr

ix

Distance to Focus

Drop a line segment straight down from the directrix plane to a point on the ellipse.
The cone element line segment to the point is the same length as the point‛s distance to focus. All cone 
elements meet the directrix plane at angle    . The cutting plane meets the directrix plane at angle    .

The line straight down from the directrix is a fold in a triangle having angles     and   .
All these triangles are similar, having the same proportions.

Since distance to focus and distance to focus are always sides of similar triangles,
the ratio of these two lengths remain constant.
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Pages 3, 4 & 5 we looked at conics in terms of distance from a point and a line.
Pages 10 and 11 we looked at conics in terms of distance from two points.

Now we will look at conics in terms of distance from two lines.
The vertical line we call the y axis, the horizontal line we call the x axis.

Above is a picture of a parabola. Can you see a pattern?
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yy

xx

(3, 9)

(2, 4)

(1, 1)

(0, 0)

(-1, 1)

(-2, 4)

(-3, 9)

y = x2

(3, 9)

(2, 4)

(1, 1)

(0, 0)

(-1, 1)

(-2, 4)

(-3, 9)

y = x2

Above is the more usual way of showing a parabola on a Cartesian grid.
When (x, y) coordinates are given, the first gives horizontal distance from the y axis,

the second coordinate gives vertical distance from the x axis.
Going to the left or going down is given a minus sign. 
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y

x

(3, 4)

(0, 0)(0, 0)

x2 + y2 = 52x2 + y2 = 52

(4, 3)

(-3, 4)

(-4, 3)

(3, 4)

(4, 3)

(-3, 4)

(-4, 3)

(0, 5)

(0, -5)

(5, 0)(-5, 0)

(3, 4)

(4, 3)

(-3, 4)

(-4, 3)

(3, 4)

(4, 3)

(-3, 4)

(-4, 3)

(0, 5)

(5, 0)(-5, 0) 3
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The vertical and horizontal distance can be seen as legs of a right triangle.
Distance from the origin (0, 0) to a point is the hypotenuse of this right triangle.

All these points are 5 units away from the origin.
x2 + y2 = 52 describes a circle with radius 5.
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V inf

V inf

V inf

V inf

V inf

Remember on page 9 how a hyperbola gets
closer and closer to the asymptotes?

As an object falls towards Earth, it moves
faster and faster. At the closest point to
the Earth, the perigee, it‛s moving at top
speed. As it moves away, Earth‛s
gravity pulls it, slowing it down.
As the hyperbola gets closer
to the asymptote, the speed
gets closer and closer to
V infinity, the speed the
object would have at
an infinite distance
from Earth.

After a few million
kilometers from the Earth,

it is moving so close to
V infinity, the difference

is negligible.

V infinity is
also called the

hyperbolic excess speed.
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A ship leaves low Earth 
orbit entering a 
hyperbolic trajectory 
with regard to the Earth.

A ship leaves low Earth 
orbit entering a 
hyperbolic trajectory 
with regard to the Earth.

Zooming out we can
see that the hyperbolic
path approaches a
straight line.

A ship leaves low Earth 
orbit entering a 
hyperbolic trajectory 
with regard to the 
Earth.

Zooming out we can
see that the hyperbolic
path approaches a
straight line.

We zoom out
some more.

What is this?
The so called 
“straight lines”
are starting to
gently curve.

What‛s going on 
here?

We‛re entering a 
scale where the tiny 
Earth‛s influence is 
barely visible, but we 
can start to see the 
effects of the much 
larger sun.

We zoom out even more and switch reference frames.
No longer is the Earth our center. The
hyperbola with regard to Earth
becomes a tiny germ sitting
on a much larger curve:
The sun centered
Earth to Mars Hohmann
ellipse we saw
on page 13.

The 3 kilometers/sec
difference between
the ellipse‛s
perihelion velocity
around the sun and
Earth‛s circular
orbit velocity
around the Sun                                                        
is the Vinfinity
for the
hyperbola
with regard
to Earth.

3 km/sec

If we zoom in
with a microscope

and switch reference
frames to Mars centered,

we‛d see another
tiny hyperbola with

regard to Mars
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Velocity
Circular
Orbit

Velocity
Parabolic

Orbit
(also known as

Escape
Velocity)

Velocity
Hyperbolic

Orbit

Vhyperbola

Vescape

Vcir
cle

V i
nf

in
it

y

V
circle

V c
ir

cl
e

V e
sc

ap
e

V h
yp

er
bo

la

Velocity
Parabolic

Orbit
(also known as

Escape
Velocity)

The further from a 
planet, the slower a 
circular orbit
At a given altitude,
Vesc = 21/2 x Vcirc .
The square root of 2
is about 1.414.
For a right isosceles
triangle, the hypotenuse is 
21/2 x the length of each 
of the two equal legs.
Likewise, 
Vhyp

2 = Vesc
2 + Vinf

2.
Remember the 
Pythagorean Theorem
on pages 22 and 23?
Using the Pythagorean 
Theorem and the memory 
device to the right, it‛s 
not hard to remember the 
relationships between
Vcirc, Vesc, Vhyp, and Vinf.    
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Parts of a
Hyperbola

a = semi major axis
b = semi minor axis

∂ = turning angle
e = eccentricity

ea = distance from hyperbola center to focus

ea Impact
Parameter

a

a

∂

∂

focus

ea

b

focus

The semi major axis of a hyperbola is often denoted 
with the letter a. This is a negative number.
A hyperbola‛s eccentricity is often labeled e.

Impact
Parameter

b
Asym

ptote

Asym
ptote

As
ym

pt
ot

e

As
ym

pt
ot

e
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From page 28: Vhyp
2 = Vesc

2 + Vinf
2.

Substituting for Vesc  and Vinf: 
Vhyp

2 = ((2 x µ / r)1/2)2 + ((µ / -a)1/2)2.
Vhyp

2 = (2 x µ / r) + (µ / -a).
Vhyp

2 = µ (2/r -  1/a).
Vhyp = (µ (2/r -  1/a))1/2.
So if we know r and a, we can find the speed.
This is called the vis-viva equation.
V = (µ (2/r -  1/a))1/2 also works for ellipses.

Since gravity gets weaker 
with more distance, it 
takes less speed to 
escape.
Escape velocity is
(2 x µ / r)1/2.
V infinity is (µ / -a)1/2.

G x mass is often called µ, pronounced “Moo”

Each speck of matter pulls 
other specks. You can think 

of gravity as each speck 
sending out tractor beams

More specks, more “tractor beams”.
The more mass, the stronger the pull.

A body‛s pull is G x mass.
G is always the same, Mass is the amount of matter in a body.

r = 1

r = 2

r = 3

At distance r = 1,
there‛s 1 tractor beam
per square unit.
Double the distance,
there‛s 1 beam per
4 square units
Triple the distance,
1 beam per 9 square units.
Gravity‛s pull gets weaker with distance.
Acceleration from gravity is µ / r2.

1 / r2 is called the inverse square. Gravity falls with
the inverse square or r.

V es
ca

pe

V es
ca

pe

V es
ca

pe

V es
ca

pe
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Objects closer to the gravitating body move 
faster while objects  farther away move slower.

The coin funnels you sometimes see at shop-
ping malls can give a feel for orbits.

The coin rolls slowly as it starts its path at the 
edge and coins closer to the center move fast.

Objects closer don’t spiral in, though. Unless 
it’s close enough to earth to feel drag

from the earth’s atmosphere.

Kinetic energy goes with
the square of velocity.

Double your speed
and you’ll quadruple
your kinetic energy.

KE also goes with mass.
m = mass of the
moving object.

v

mv2

m

v

v

½mv2

m

v

Kinetic energy = ½mv2 

v vb

vb

mv2

mvb
2m(v*vb)

m
(v

*v
b)

v

m
vb

vb½mv b
2

m
(v

*v
b)

v

v

½mv2

m

½mv b
2

½mv2

OBERTH
BENEFITm

(v
*v

b)

Vb=velocity added
by a rocket burn.

If you make a burn to 
accelerate a rocket 

while going fast,
you get more

kinetic energy.
This is known as the

Oberth
benefit.

Thus you get more 
bang for your buck 
doing a burn when 

you‛re closer
to a planet and 
moving faster.
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High earth orbits
are relatively slow and

low earth orbits move faster.

So a fellow who calls himself Rune
was telling me it‛s better

to depart from
LEO (Low Earth Orbit)
when heading for Mars.

“What about Mr. Oberth?”
Rune asked me.

I‛m going so slow 
that a small tap of 

my brakes kills 
most my speed 

and I start falling 
towards earth.

I pick up speed as 
I fall towards 
perigee (the 

closest point to 
earth in my
new orbit).

I catch up to Rune at just a hair under escape velocity -  10.9 km/s. Rune is moving 7.7 km/s.
A perigee burn would get me nearly twice the Oberth benefit Rune‛s LEO burn would give.
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Moon to Earth in about 6 days

EM
L2 to Moon about 3 days

MOON

MOONEML2

EML2

EARTH

EARTH

A .15 km/s burn
at EML2 drops
the ship to a

110 km perilune. 

At perilune the ship is 
moving 2.4 km/s. With an 
Oberth benefit, .18 km/s 

is enough to drop to a 
near earth perigee.  

At a 200 km perigee,
the ship is moving nearly
11 km/s. At this speed 

another .6 km/s is
enough for TMI

(Trans Mars Insertion).
EML2 to TMI is ~1 km/s

The Farquhar Route
from EML2 to LEO

The Farquhar route is time 
reversible. Going from LEO 

to EML2 takes about 9 
days and about 3.5 km/s. 
3.15 km/s to depart LEO,
a .18 km/s perilune burn 
and another .15 burn to 

park at EML2.

This route was 
discovered by 

NASA engineer 
Robert Farquhar in 

the early 1970s.

“What‛s EML2?”
you might ask.

EML2 is the 2nd
Earth Moon Lagrange Point. 

There are 5 such points.
These are where the

moon‛s gravity,
earth‛s gravity and
centrifugal force

all cancel out. 

For the EML2 tug-of-war,
Earth‛s gravity & Moon‛s gravity

are on the same team
against centrifugal force

Stuff parked at EML4 & 5
tend to stay put.

EML1, 2 & 3 are quasi stable. 
Stuff parked there

will stick around with a
small station keeping expense.

In terms of orbital energy,
EML2 is the closest to escape.

Earth‛s
Gravity

Moon‛s
Gravity

Centrifugal
Force EM

L2
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The Rocket Equation:
Mass fraction propellent = 1-e-delta V/exhaust velocity.

Here the letter e doesn‛t refer to eccentricity but rather Euler‛s number, 
a number discovered by Leonhard Euler. The number e is about 2.72

Let‛s say our
delta V budget

is 3 km/s
and we‛re using

oxygen/hydrogen
bipropellent with an
exhaust velocity

of 4.4 km/s.
e -(3 km/s) / (4.4 km/s) =  e -3/4.4

=  .5057 (about 1/2)

A 3 km/s rocket
is about 1/2

propellent by mass.

Engine

Pay
Load
Avionics

St
ru

ct
ur

e

St
ru

ct
ur

e

Pr
op

el
le

nt

10
Tonnes

Dry
Mass

10
Tonnes

Pro-
pellent

So if we want a
6 km/s

delta V budget,
we need to accelerate

3 km/s more.
We need

20 tonnes
propellent

to accelerate our
10 tonnes of dry mass plus

10 tonnes of propellent.

Each 3 km/s added
to the delta V budget
doubles total mass. Engine

Pay
Load
Avionics

S
t
r
u
c
t
u
r
e

S
t
r
u
c
t
u
r
e

Pr
op

el
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nt

10
Tonnes

Dry Mass
and 10
tonnes
pro-

pellent
20

Tonnes
Pro-

pellent

Payload, avionics, structure and 
engine mass stay the same.

But the structure must enclose 
triple the volume of propellent.

So the structure gets 
thinner and less sturdy.

Pr
op

el
le

nt
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3 km/s
Dry Mass 50%

6 km/s
Dry Mass 25%

9 km/s
Dry Mass 12.5%

One half of this egg‛s 
volume is shell.

One fourth of this egg‛s 
volume is shell.

One eighth of this egg‛s 
volume is shell.

As the delta V budget goes up, the structure of the ship must become thinner and more 
delicate. It takes between 9 and 10 km/s to get to orbit and between 12 and 13 km/s to 

earth escape. So the upper stages must have walls and structure egg shell thin.

And spacecraft must endure extreme conditions.
Max Q for ascent through earth‛s atmosphere is often around 35 kilopascals.

For re-entry Max Q can reach 90 kilopascals.

A severe hurricane is about 3 kilopascals.

In a world with no gas stations...

After the tanker fuel
is used up, the tank and
large engine is dead
weight that uses up too
much fuel.

It‛s thrown away

After the pickup does
it‛s part, it‛s tossed.

The VW bug meets the
same fate...

And the motorcycle gets 
flushed. For decades this 
has been the way to 
reach destinations.

To meet mass fraction constraints, 
aerospace engineers have
designed staged rockets.

Dry mass is thrown away enroute.

Could you imagine how much a
transcontinental flight would cost
if we threw away a 747 each trip?

The cartoon to the right
is somewhat dated.

As of this writing (2019)
Jeff Bezos‛ Blue Origin and
Elon Musk‛s SpaceX seem

well on their way to making
economical, reusable boosters.

But upper stages remain expendable
(in other words, disposable).
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The exponential
rocket equation

MassPropellent=MassFinal e(Dv/Vexhaust ) - 1

The Legend of Pal Paysam illustrates 
the power of exponential growth.

An east Indian king was proud of his 
chess playing skills. A stranger 

(Krishna in disguise) challenged the 
king to a game with this wager:

1 rice grain on the first square of 
the chess board, 2 grains on the 

second square, then 4 and continuing 
to double each square of the board.

Only after the king lost did he 
realize the enormity of his wager.

265 - 1 =
36893488147410103231

grains of rice

Which would be about 7 times
the mass of Mount Everest.

Propellent
Depots

Given a propellent depot
every so often and the exponent
in the rocket equation is broken 

into smaller chunks.

22 + 22 + 22 + 22 << 28

For example.
To the right Mt. Everest can

now be seen in the background.
Refueling every so often

saves a bunch of propellent.
More importantly, breaking

the delta V budget into
smaller chunks makes for

more doable mass fractions.
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Dynamic pressure is 1/2 ρ v2 where ρ is atmospheric 
density and v is velocity. Moving orbital velocity at 
sea level inflicts about 35,000 kilo pascals dynamic 
pressure. Which would be like flying into into a 
flaming brick wall. Not only would it damage the 
ship but it would slow it down.

At 100 km altitude the air‛s so thin the ship suffers little dynamic pressure.
Ships usually attain this altitude before doing the major burn to achieve orbital velocity.

A severe hurricane is about 3 kilo pascals. Typical Max Q for a rocket‛s ascent is about
35 kilo pascals. Moving orbital velocity at sea level inflicts about 35,000 kilopascals.

At about 100 km altitude
ships often turn and do 

the major horizontal 
burn to achieve orbital 

velocity (about 8 km/s)*

At about 12 km altitude and
.5 km/s velocity ships endure
maximum dynamic pressure

(also known as Max Q)
of about 35 kilo pascals.*

Highest
Mountains

about
7 km.

Weather
Balloons
about
35 km.

Karman
Line

100 km.

Cloud
Tops
about
12 km.

Scale Height
Each 8.5 km

the atmosphere
thins by a factor

of about 2.72
(Euler‛s number)

*Numbers are approximate. Ships can reach Max Q or do burns at different altitudes & velocities.*Numbers are approximate. Ships can reach Max Q or do burns at different altitudes & velocities.



56

Ro
ck

et
 A

cc
el

er
at

io
n

Gravity

N
et

A
cc

el
er

at
io

n

Rock
et 

Acce
ler

ati
on

Ro
ck

et
 A

cc
el

er
at

io
n

Rock
et 

Acce
ler

ati
on Gravity

Net Acceleration

N
et

A
cc

el
er

at
io

n

Net Acceleration

Gravity loss is at a maximum
when rocket acceleration vector 

points straight up.

GRAVITY LOSS

THRUST/WEIGHT RATIO  (T/W)

Gravity cancels out some of
a rocket‛s upward acceleration.

Earth surface gravity:
9.8 m/sec2.

102 seconds vertical ascent
means 1 km/s gravity loss.
To minimize gravity loss,

ascent needs to be
as fast as possible.
For ascent we want to

maximize thrust & acceleration.
A booster stage will
typically have more
rocket engines than

an upper stage.

T/W = 1
The ship hovers in place.

It never gets off the ground.

SH
IP

 W
EI

GH
T

RO
CK

ET
 T

HR
US

T

T/W = 3
It takes the ship 101 seconds 

to reach the Karman Line.
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T/W = 2
It takes the ship 143 seconds 

to reach the Karman Line.
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T/W = 2
It takes the ship 143 seconds 

to reach the Karman Line.

THE MYTH OF 30X  — The Tier One Project won the 
$10 million Ansari X-Prize in 2004 when they made 
two suborbital trips within 5 days with a reusable 

manned rocket. Some said “Big deal. Potential energy 
at the Karman line is only 1/30 of the kinetic energy of 

a 7.7 km/s orbit. Getting altitude isn‛t the problem -- 
It‛s going sideways fast.” This argument ignores 

gravity loss and a booster‛s need for extra thrust.
A booster stage to get above the Karman line

can easily be 2/3 of a rocket‛s cost.
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Websites and Books of Interest

Orbital Mechanics:  http://www.braeunig.us/space/orbmech.htm
Nice orbital mechanics resource

Astrogator’s Guild: https://see.com/astrogatorsguild/
Professional astrogators Mike and John talk about space exploration

Atomic Rockets:  http://www.projectrho.com/public_html/rocket/
Great resource for space enthusiasts and writers of hard science fiction.

Blog on science fiction and space exploration: http://toughsf.blogspot.com
Matter Beam explores various hard science fiction ideas 

Blog on space exploration: https://selenianboondocks.com
Jonathan Goff’s blog on possible space technologies

Sarmount’s Opening the High Frontier:  http://www.high-frontier.org/author/eaglesarmont/
Sarmount suggested vertical skyhooks in the 1990’s.

Moonwards, advocates of lunar settlement:  https://www.moonwards.com
Kim Holder and friends explore possible benefits lunar development could offer

https://newpapyrusmagazine.blogspot.com
Marcel Williams’ thoughts on space exploration and lunar development

A forum on space exploration: https://forum.nasaspaceflight.com
News and discussion of space exploration

A forum on space exploration:  https://www.reddit.com/r/space/
News and discussion of space exploration

Space Stack Exchange:  https://space.stackexchange.com
Questions and answers on space exploration

Orbiter:  http://orbit.medphys.ucl.ac.uk
A space flight simulator

Kerbal Space Program: https://www.kerbalspaceprogram.com
A game that teaches orbital mechanics

Scott Manley’s YouTube Channel: https://www.youtube.com/user/szyzyg/featured
Kerbal Space Program tutorials and more

Fundamentals of Astrodynamics by Bate, Mueller and White
An inexpensive textbook on orbital mechanics

Mining The Sky by John S. Lewis
Possible resources from the asteroids

Rain of Iron and Ice by John S. Lewis
The possibility of destruction from asteroid impacts


